Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Immunol ; 14: 1158905, 2023.
Article in English | MEDLINE | ID: covidwho-20239264

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.


Subject(s)
COVID-19 , Humans , COVID-19 Vaccines , SARS-CoV-2 , Antibodies, Neutralizing , Machine Learning
3.
Earth Syst Environ ; 4(4): 789-796, 2020.
Article in English | MEDLINE | ID: covidwho-942670

ABSTRACT

A probe of a patient, seeking help in an emergency ward of a French hospital in late December 2019 because of Influenza like symptoms, was retrospectively tested positive to COVID-19. Despite the early appearance of the virus in Europe, the prevalence and virulence appeared to be low for several weeks, before the spread and severity of symptoms increased exponentially, yet with marked spatial and temporal differences. Here, we compare the possible linkages between peaks of fine particulate matter (PM2.5) and the sudden, explosive increase of hospitalizations and mortality rates in the Swiss Canton of Ticino, and the Greater Paris and London regions. We argue that these peaks of fine particulate matter are primarily occurring during thermal inversion of the boundary layer of the atmosphere. We also discuss the influence of Saharan dust intrusions on the COVID-19 outbreak observed in early 2020 on the Canary Islands. We deem it both reasonable and plausible that high PM2.5 concentrations-favored by air temperature inversions or Saharan dust intrusions-are not only modulating but even more so boosting severe outbreaks of COVID-19. Moreover, desert dust events-besides enhancing PM2.5 concentrations-can be a vector for fungal diseases, thereby exacerbating COVID-19 morbidity and mortality. We conclude that the overburdening of the health services and hospitals as well as the high over-mortality observed in various regions of Europe in spring 2020 may be linked to peaks of PM2.5 and likely particular weather situations that have favored the spread and enhanced the virulence of the virus. In the future, we recommended to monitor not only the prevalence of the virus, but also to consider the occurrence of weather situations that can lead to sudden, very explosive COVID-19 outbreaks.

SELECTION OF CITATIONS
SEARCH DETAIL